

ETA® International Common Formulas

For use on all Basic Electronics Exams – Associate CET (CETa), Basic Systems Technician (BST), Electronics Modules (EM1-5), Student Electronics Technician (SET) as well as the General Communications Technician-Level 1 (GCT1) Exam

Conversion Factors

π (Pi) = 3.14	1 meter = 3.28 feet
$2\pi = 6.28$	1 inch = 2.54 centimeters
$log\pi = 0.497$	1 radian = 57.3°

Resonant Frequency Formulas

Where f is in kHz, L is in microhenries, C is in microfarads $f_{\text{kHz}} = 159.2 / \sqrt{\text{LC}}$

Where \boldsymbol{f} is in Hz, \boldsymbol{L} is in Henries, \boldsymbol{C} is in Farads

$$f_{\text{resonant}} = \frac{1}{2\pi\sqrt{\text{LC}}}$$

International System of Units (SI)

Prefix	Symbol	Multiplier	Power of Ten
Terra	Т	trillion	1012
Giga	G	billion	10 ⁹
Mega	М	million	10 ⁶
kilo	k	thousand	10 ³
none	none	1	10°
milli	m	1/thousandth	10 ⁻³
micro	μ	1/millionth	10-6
nano	n	1/billionth	10 ⁻⁹
pico	р	1/trillionth	10-12

E = Voltage I = Current
P = Power R = Resistance

Frequency & Wavelength Formulas f = frequency, $\lambda = wavelength$

$$0.5\lambda = 180^{\circ} = \text{half wave}$$
 and $0.25\lambda = 90^{\circ} = \text{quarter wave}$

$$f_{\text{kHz}} = (3 \times 10^8) / \lambda_{\text{meters}}$$
 or $f_{\text{mHz}} = 984 / \lambda_{\text{feet}}$

$$\lambda_{\text{meters}} = (3 \times 10^8) / f_{\text{kHz}}$$
 or $\lambda_{\text{feet}} = 984 / f_{\text{mHz}}$

 $c = f \times \lambda$ where **c** is the speed of light

Sine Wave Conversion

- Effective value (RMS) = 0.707 x Peak Value = 1.11 x Average Value
- Peak Value = 1.414 x Effective Value (RMS) = 1.57 x Average Value
- Average Value over positive half period = 0.637 x Peak Value = 0.9 x Effective Value (RMS)
- Identify: Waveform, Peak (amplitude), RMS, 1 cycle over time period (frequency), Peak to peak, and practical average

Voltage Gain In Decibels

Gain dB = $20\log(V_{out}/V_{in})$

Ratio Of 2 Power Levels In Decibels

Gain dB = $10\log_{10} (P_2 / P_1)$

Resistors In Series

 $R = R_1 + R_2 + R_3 ...$

Resistors In Parallel

 $1/R = (1/R_1) + (1/R_2) + (1/R_3)...$

Inductors Connected In Series

 $L = L_1 + L_2 + L_3 ...$

Inductors Connected In Parallel

 $1/L = (1/L_1) + (1/L_2) + (1/L_3)...$

PEMDAS Rule

Parentheses, Exponents, Multiplication, Division, Add, Subtract

Reactance Of Inductors

Where \mathbf{X}_{L} is reactance, \mathbf{f} is frequency, and \mathbf{L} is inductance $\mathbf{X}_{L} = 2 \times \mathbf{\pi} \times \mathbf{f} \times \mathbf{L}$

Time Constants

T (Greek Tau), R (ohms), C (Farads), L (Henries)

RL circuit: 1 T (sec) = $L(H) / R(\Omega)$

RC circuit: 1 T (sec) = $R(\Omega) \times C(F)$

Compute Charge Or Quantity of Electricity

where ${\bf Q}$ is the charge (in Coulombs), ${\bf C}$ is the capacitance (in Farads), and ${\bf V}$ is the potential difference (in Volts) ${\bf Q} = {\bf C} \times {\bf V}$

Energy Storage In A Capacitor

where **W** is the energy (in Joules), **C** is the capacitance (in Farads), and **V** is the potential difference (in Volts) $W = \frac{1}{2} C \times V^2$

Capacitors Connected In Parallel

$$C = C_1 + C_2 + C_3 + ...$$

Capacitors Connected In Series

 $1/C = (1/C_1) + (1/C_2) + (1/C_3) + ...$

Reactance Of Capacitors

 $X_{c} = 1 / (2 \times \pi \times f \times C)$

Impedance For A Series Circuit

where **Z** is impedance

$$Z = \sqrt{R^2 + (X_1 - X_2)^2}$$

Impedance For R And X In Parallel

$$7 = \frac{RX}{\sqrt{R^2 + X^2}}$$

Battery Internal Resistance

 $V_{out} = EMF - (R_{int} \times I_{out})$